Metabolomics for a Low Carbon Society

PLANNING

- Meeting in Tokyo November 2009
- Workshop in Davis May 2010
- JHLC Discussion
 June 2010
- Implementing Agreement September 2010

SCOPE

- Plants, microbes, algae
- Standards and annotation
- Capture of all major metabolites
- Specialized metabolites of potential value

IMPLEMENTATION

- Dear Colleague Letter September 2010
- Joint Solicitation October 2010
- Proposal Deadline February 2011
- Joint Panel Review (NSF) May 2011
- Joint Site Visit (Hawaii)
 June 2011
- Awards and PI Meeting August 2011

Future Metabolomics Challenges & Opportunities! Synergistic Biological Areas Technology Development plant-microbe, biotic rimary metabólism, lipids, is, nutrient acquisition/utilization, Engineering Greater metabolite identification Systems Spatially resolved sampling Increased dynamic range Increased depth-of-coverage ġ, Metaboli icinteractions Mappir Dis and Metabolic Modeling Community Database(s) & Informatics **Tool Development** ment (multi-troph **Secondary Metabolisn Functional Genomics** Environment (multi-t stress, microbial, algae) Lower cost Usable by non-experts Genome-wide Biology and M Relatively high throughput Data comparable across laboratories and studies

- One competition in FY 2011
- Three-year awards with potential for 2year extension
- \$6 million from JST
- \$6 million from NSF
 - \$3 million from IOS
 - \$3 million from MCB
- Four projects @ \$0.5m/yr for 3 yrs
- RCN to coordinate all international projects

Future Opportunities for NSF BIO:

- Bio-prospecting
- Bio-inspired materials
- Environmental sampling
- Metabolic modeling

Challenges

- Metabolic engineering
- Other organisms